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Abstract 

Several peculiar spectral signatures of post-ischaemic 

ventricular tachycardia (VT) electrograms (EGMs) have 

been recently published in the scientific literature. 

However, despite they were claimed as potentially useful 

for the automatic identification of arrhythmogenic targets 

for the VT treatment by trans-catheter ablation, their 

exploitation in machine learning (ML) applications has 

been not assessed yet. 

The aim of this work is to investigate the impact of the 

information retrieved from these frequency-domain 

signatures in modelling supervised ML tools for the 

identification of physiological and abnormal ventricular 

potentials (AVPs). As such, 1504 bipolar intracardiac 

EGMs from nine electroanatomic mapping procedures of 

post-ischaemic VT patients were retrospectively labelled 

as AVPs or physiological by an expert electrophysiologist. 

In order to assess the efficacy of the proposed spectral 

features for AVPs recognition, two different classifiers 

were adopted in a 10-time 10-fold cross-validation 

scheme. In both classifiers, the adoption of spectral 

signatures led to recognition accuracy values above 81%, 

suggesting that the use of the frequency-domain 

characteristics of these signals can be successfully 

considered for the computer-aided recognition of AVPs in 

substrate-guided mapping procedures.  

 

 

1. Introduction 

Nowadays, trans-catheter ablation guided by 

electroanatomic mapping has been revealed as an 

effective treatment for post-ischaemic ventricular 

tachycardias (VTs) [1], [2]. During these clinical 

procedures, the identification of VT arrhythmogenic sites 

for their subsequent ablation relies on different signal 

characteristics and mapping tools, necessarily requiring 

high expertise of the clinical operators. Specifically, 

during substrate-guided mapping, bipolar electrograms 

(EGMs) recorded from damaged myocardial areas are 

carefully inspected by electrophysiologists, in order to 

identify those late and fractionated pathological 

deflections associated with arrhythmogenic areas. These 

pathological potentials, generally named abnormal 

ventricular potentials (AVPs), have been often associated 

with high-frequency components in the scientific 

literature [3]–[7], and more recently, their spectral 

contents have been deeply investigated [8], highlighting 

the presence of peculiar spectral signatures for AVPs. 

However, there is no evidence that such spectral 

signatures may be effective for the automatic recognition 

of AVPs and physiological EGMs, despite the usefulness 

of artificial intelligence tools for the recognition of 

arrhythmogenic zones in patients suffering from post-

ischaemic VT has been already investigated [9], [10]. 

In this study, we aim at investigating the impact of 

these frequency-domain signatures [8] of post-ischaemic 

EGMs in modelling effective supervised machine learning 

tools for the classification of physiological EGMs and 

AVPs. 

 

2. Materials and methods 

2.1. Dataset 

This retrospective study on anonymised data was 

approved by the Independent Ethical Committee of the 

ATS (Azienda Tutela Salute, Sardegna). All the 

participants provided their signed informed consent.  

We considered bipolar EGMs collected from nine 

patients with post-ischaemic VT during electroanatomic 
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mapping procedures in sinus rhythm by the CARTO®3 

mapping system (Biosense Webster, Inc., Diamond Bar, 

California). The recorded EGMs were sampled at 1 kHz 

and band-pass filtered between 16 and 500 Hz. All EGM 

segments around the reference annotation were labelled 

by an experienced electrophysiologist as physiological 

beats or AVPs, following [8], [10], thanks to an ad-hoc 

MATLAB graphical user interface. In order to provide the 

classifiers with a balanced dataset exhibiting an equal 

number of AVPs and physiological potentials, we 

included in this study only 1504 EGMs (i.e., 752 signals 

for each class).  

Some examples of AVPs and their spatial localisation 

on the voltage map are provided in Figure 1. 

 

2.2. Extraction of spectral features 

In recent investigations [8], some spectral signatures 

have been identified as relevant for the characterization of 

post-ischaemic physiological bipolar EGMs and AVPs, at 

least from a statistical point of view.  

The extraction of these features has been based on the 

computation of the power spectral density (PSD), as 

shown in Figure 2. Specifically, in [8], the PSD-based 

relative power analysis, which was introduced to get rid of 

the EGM voltage amplitude influence, was found to be 

particularly significant to distinguish among the different 

types of AVPs and post-ischaemic ventricular potentials. 

The frequency band of the signal was divided into non-

overlapping 20-Hz sub-band partitions up to 320 Hz. 

Then, the relative power content in each sub-band was 

computed as the ratio between the absolute power 

contained in that sub-band and the power related to the 

whole PSD curve up to 320 Hz. We excluded from this 

analysis the 20-40 Hz sub-band, as it didn’t present any 

statistical relevance in the distinction between the two

 

classes (physiological and AVP EGMs) [8]. 

According to [8], some further spectral features were 

introduced, in order to describe some intrinsic aspects of 

the PSD morphology. Accordingly, on the PSD of each 

EGM, we computed the mean frequency (MNF), the peak 

frequency (PKF), the mean spectral power (MNP), and 

the power spectrum ratio (PSR). Specifically, MNF was 

introduced to indicate around which frequency most of the 

power spectral contents were localized, the PKF identified 

the frequency in correspondence with the maximum 

power content in the PSD, whereas the MNP and the PSR 

reflected the average power spectral contents below 320 

Hz and around the PKF, respectively. 

Overall, 19 features were extracted from each EGM. 

All these features were used to train a support vector 

machine (SVM) and a K-Nearest Neighbours (KNN) 

classifier, as explained in detail in the following section. 

 

2.3. Classification tools 

In this work, the proposed features have been used to 

train and test two feature-based supervised classification 

models for the recognition of AVPs and physiological 

potentials. In particular, we investigated the efficacy of 

the proposed frequency-based signatures by exploiting an 

SVM classifier with 2nd-order polynomial kernel function 

and box constraint equal to 1, and a KNN model based on 

Euclidean distance computation with inverse distance 

weighting and the number of nearest neighbors set at 10. 

 

 
Figure 1. Examples of AVPs and their spatial location 

onto the voltage map. Specifically, from left to right, 

an AVP exhibiting deflections during and after the 

surface QRS (left), after its end (middle), and falling 

within the surface QRS (right) are represented and 

included in the adopted dataset. 

 
Figure 2. An example of PSD for an AVP. Here, the 

relative power has been estimated from the area under 

the PSD in each 20-Hz sub-band, except for the 20-40 

Hz sub-band (highlighted as grey area). 
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Remarkably, default parameters were chosen in order to 

avoid presenting overfitted results. 

 

2.4. Performance evaluation 

In order to assess the trained models, a 10-time 10-fold 

cross-validation with stratified partitions was adopted. 

Remarkably, at each time, both classifiers were trained on 

the same folds, and their recognition capabilities were 

assessed on the same test data.  

For a quantitative evaluation of their performance, the 

following metrics were computed and compared: the 

accuracy (ACC), the True Positive Rate (TPR), the True 

Negative Rate (TNR), the False Positive Rate (FPR), the 

F1-score and the Positive Predictive Value (PPV), as  

 

𝐴𝐶𝐶 = (𝑇𝑃 + 𝑇𝑁) (𝑃 + 𝑁)⁄   (1) 

 

𝑇𝑃𝑅 = 𝑇𝑃 𝑃⁄  (2) 

 

𝑇𝑁𝑅 =  𝑇𝑁 𝑁⁄  (3) 

 

𝐹𝑃𝑅 =  𝐹𝑃 𝑁⁄  (4) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2(𝑃𝑃𝑉 ∙ 𝑇𝑃𝑅) (𝑃𝑃𝑉 + 𝑇𝑃𝑅)⁄  (5) 

 

with 

 

𝑃𝑃𝑉 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄   (6) 

where 𝑃 and 𝑁 represent the total number of AVPs and 

physiological EGMs, respectively, 𝑇𝑃 and 𝑇𝑁 the number 

of AVPs and physiological potentials correctly 

recognized, and 𝐹𝑃 identifies the total number of 

physiological potentials classified as AVPs. 
For each dataset partition, the EGM samples were 

randomly divided into 90% for training and 10% for 

testing. The process was repeated ten times and, at each 

time, the cumulative metrics over the 10 folds has been 

computed. Then, for a more robust assessment, the mean 

and the standard deviation of the metrics over the 10 times 

have been compared.  

 

3. Results 

Table 1 summarizes the mean and standard deviation for 

all metrics evaluated for both classifiers, whereas in 

Figure 3, the cumulative confusion matrices of the tested 

classifiers are reported.  

As can be seen, the strategy of modeling classifiers for 

the automatic recognition of AVPs using only information 

from the frequency domain led to classification models 

with accuracy above 81%. Interestingly, the KNN 

 

Table 1. Performance indexes for the proposed SVM 

and KNN classifiers. 

 

 Classifier 

 SVM KNN 

Accuracy [%] 81.2 ± 1.1 85.0 ± 0.9 

TPR [%] 82.4 ± 1.6 85.3 ± 1.5 

TNR [%] 79.9 ± 1.1 84.7 ± 1.5 

FPR [%] 20.1 ± 1.1 15.3 ± 1.5 

F1-score 0.82 ± 0.01 0.85 ± 0.01 

 

 

 
Figure 3. Cumulative confusion matrices for the two 

classifiers. In each matrix, the TPR (black box on the 

bottom-right corner) and the TNR (black box on the 

top-left corner) are reported along with their 

respective false negative rate (white box on the top-

right corner) and FPR (light box on the bottom-left 

corner). 
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outperforms the SVM in all evaluated metrics. In 

particular, the accuracy obtained with the KNN reaches 

85.0%, which is +3.8% higher with respect to the SVM. 

Moreover, also the values of TPR and TNR are markedly 

different between the two classifiers: the KNN reports 

similar values (about 85%), while the SVM showed 

TPR=82.4% and TNR=79.9%. However, even if the SVM 

showed higher false positive alarms (i.e., 20.1% vs. 

15.3%), it is not strictly a downside limiting its 

application, since it reflects a more conservative behavior 

that draws the attention of clinicians to physiological 

potentials that are recognized as AVPs. Remarkably, 

SVMs have been already successfully adopted for the 

real-time classification of biopotentials on low-power 

digital architectures [11], thus allowing to envision an 

effective embedding into a real electroanatomic mapping 

system. Finally, both classifiers exhibited quite similar 

F1-score.  

 

4. Conclusions 

In this work, the adoption of the statistically significant 

spectral signatures proposed in [8] has been investigated 

for the development of an effective supervised machine-

learning tool able to distinguish between AVPs and 

physiological potentials. Our results highlighted that the 

proposed frequency-domain features may lead to very 

high AVPs recognition performance, which may attain 

85% in accuracy and TPR when a KNN classifier is 

chosen. These findings are promising, despite an accurate 

validation on a larger dataset with multiple annotators 

needs to be pursued before clinical exploitability. 
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